
 
1 

SQL AND RDBMS 

SQL (Structured Query Language) is an ANSI (American National Standards Institute) 

programming language for creating, updating, and retrieving information that resides in a database. 

Databases are made up of tables and each table contains records (rows) and the records contain 

columns (fields) where data resides. There are often multiple tables in a RDBMS (Relational 

Database Management System) and each table has a unique name and each column in the table is 

also unique.  

With SQL you can turn ordinary questions (“Where do the clients that we serve reside?”) into a SQL 

statement that the database understands: select City, State from ClientAddresses 

This class will utilize the DBMS (Database Management System) – Microsoft SQL Server and SQL 

Management Studio as a tool to create and execute SQL statements.  

RELATIONAL MODEL 

The relational model represents data in the form of tables. Each table may represent some real-

world person, place, thing, or event about which information is collected. In the following example 

the rectangle (U) represents the database and the circles (A and B) inside represent tables. The 

relative position and overlap of the circles indicate relationships between the tables.  

U 

 

TABLES 

A table is the database structure that holds data and is a two-dimensional grid that has columns 

and rows.  

An excerpt of the dbo.Clients table, which is in the eV database, is displayed below:  

id ClientCode BirthDate SSN PreferredName 

20210512052654461C90724DE8C22487B983 JSMITH1293 06/26/1990 875454555 John 

 



 
2 

COLUMNS 

Each column represents a specific attribute of the client. In the dbo.Clients table, ClientCode shows 

the unique Client Code of the client within the same row. JSMITH1293 is John Smith’s Client Code. 

ROWS 

Each row describes a fact about the client which is a unique instance of that client. Each row 

contains a value or null for each of the table’s columns. No two rows in a table can be identical. 

Each row in a table is identified uniquely by its primary key: ID. 

PRIMARY KEYS 

Primary Keys are required within each table of a database and are unique within the row.  

Each time a client is created within echoVantage a dbo.Clients record is created and assigned a 

unique ID value.  

FOREIGN KEYS 

A column (or group of columns) in a table whose values relate to, or reference, values in some 

other table to ensure that rows in one table have corresponding rows in another table.  

Client is an example of a Foreign Key or value that relates to the ID (primary key) within the 

dbo.Clients table. Client is found in many tables within the echoVantage database. 



 
3 

 

RELATIONSHIPS 

A relationship is an association established between common columns in two tables. A relationship 

can be:  One-to-One, One-to-Many or Many-to-Many.  

ONE-TO-ONE 

In a one-to-one relationship, each row in the first table can have at most one matching row in the 

second table, and each row in the second table can have at most one matching row in the first 

table. A one-to-one relationship is established when the primary key of one table (dbo.Clients.id) 

also is a foreign key referencing the primary key of another table (table.ClientID). *Staff and User is 

one to one 

 

dbo.Staff 

Id StaffCode 

485BBBF09B194BDCB2 EVSTAF394 

dbo.AppUsers 

Staff UserName 

485BBBF09B194BDCB2 evStaff 

 

ONE-TO-MANY 

In a one-to-many relationship, each row in the dbo.Clients table can have many matching rows in 

the dbo.Services table, but each row in the dbo.Services table can have only one matching row in 

the dbo.Clients table.  

 

dbo.Clients 

Id ClientCode 

485BBBF09B194BDCB2 JSMITH1293 

dbo.Services 

Client StartDate 

485BBBF09B194BDCB2 01/01/2021 

485BBBF09B194BDCB2 01/23/2021 

485BBBF09B194BDCB2 03/20/2021 

 

The dbo.Clients.Client is the foreign key and it relates to dbo.Clients.Id which allows you to 

determine the Services associated to each client.  



 
4 

 

SQL - BASICS 

A SQL script is a sequence of SQL statements executed in order. To write a script, you must know 

the rules that govern SQL syntax.  

COMMENTS 

A comment is optional text that explains your SQL. Comments describe what a script does and how 

or why code was changed. Comments are for humans –the computer ignores them. A comment is 

represented by either two dashes (--) preceding the comment or you may comment multiple lines 

with /* at the beginning and */ at the end of the comment. Comments should be used extensively 

throughout scripts to ease future maintenance. 

 --This is a comment. 

/* This is a multi line 

comment. */ 

SQL STATEMENT 

A SQL statement is a valid combination of tokens introduced by a keyword. Tokens are the basic 

indivisible particles of the SQL language; they can’t be reduced grammatically. Tokens include 

keywords, identifiers, operators, literals (constants), and punctuation symbols.  

CLAUSES 

An SQL statement has one or more clauses. In general, a clause is a fragment of an SQL statement 

that’s introduced by a keyword, is required or optional, and must be given in a particular order. 

SELECT, FROM, WHERE, and ORDER BY introduces four clauses in this example.  

KEYWORDS 

Keywords are words that SQL reserves because they have special meaning in the language. Using a 

keyword outside its specific context (as an identifier, for example) causes an error. 

IDENTIFIERS 

Identifiers are words that are used to name database objects such as tables, columns, aliases, 

indexes, and views. ClientCode, DeclinedEthnicity, dbo.Clients are the identifiers in the 

example below.  

SELECT ClientCode, DeclinedEthnicity --select [column_name(s)] 

FROM dbo.Clients   -- from a table 
WHERE DeclinedEthnicity = 'N'  --conditional on a [column_name] 

ORDER BY ClientCode   -- order by a [column_name] 
 

 



 
5 

SELECT ClientCode, DeclinedEthnicity 
FROM dbo.Clients 
WHERE DeclinedEthnicity = 'N' 
ORDER BY ClientCode 

ClientCode DeclinedEthnicity  

JSMITH1293 N  

DATA TYPES 

Each column in a table has a single data type. The data type determines a column’s allowable 

values and the operations it supports. An integer data type, for example, can represent any whole 

number and supports the usual arithmetic operations: addition, subtraction, multiplication, and 

division (among others). But an integer can’t represent a nonnumeric value such as ‘john’ and 

doesn’t support character operations such as capitalization and concatenation.  

The data type affects the column’s sort order. The integers 1, 2, and 10 are sorted numerically, 

yielding 1, 2, 10. The character strings ‘1’, ‘2’, and ‘10’ are sorted alphabetically, yielding ‘1’, ‘10’, 

‘2’. Alphabetical ordering sorts strings by examining the values of their characters individually. Here, 

‘10’ comes before ‘2’ because ‘1’ (the first character of ‘10’) is less than ‘2’ alphabetically. 

The following data types are used within the eV database; datetime, date, character (char), variable 

character (varchar), decimal (amount), and integer (whole number).  

USING QUOTES WHEN RETRIEVING DATA 

Single quotes are used for Character, Variable Character, Datetime and Date values whereas 

Numeric and Integer values should not be enclosed in single quotes. 

For text values: 

--Correct usage: 
SELECT * FROM dbo.VRaceCodes WHERE ConceptCode = 
'2076-8' 
 
--Incorrect Usage: 
SELECT * FROM dbo.VRaceCodes WHERE ConceptCode = 
2076-8 

For numeric values: 

--Correct usage: 
SELECT * FROM dbo.Services WHERE ClientDuration 
> 50 
 
--Incorrect Usage: 
SELECT * FROM dbo.Services WHERE ClientDuration 
> '50' 



 
6 

 

RETRIEVING DATA FROM A TABLE USING THE SE LECT STATEMENT 

The SELECT statement is used to select data from a table. The tabular result is stored in a result 

table (called the result set). 

SELECT column_name(s) FROM table_name 



 
7 

 

SELECT COLUMNS 

To select the columns "FirstName" and "LastName", use a SELECT statement like this: 

SELECT FirstName, LastName FROM ClientNames 

dbo.ClientNames table 

FirstName MiddleName LastName 

John A Smith 

Jane A Smith 

John A Doe 

Jane A Doe 

THE RESULT SET 

The result from a SQL query is stored in a result-set. Most database software systems allow 

navigation of the result set with programming functions, like: Move-To-First-Record, Get-Record-

Content, Move-To-Next-Record, etc. 

FirstName LastName 

John Smith 

Jane Smith 

John Doe 

Jane Doe 

 



 
8 

CREATING COLUMN ALIASES WITH AS  

In the query results so far we’ve allowed the DBMS to use default values for column headings. (A 

column’s default heading in a result is the source column’s name in the table definition.)  You can 

use the AS clause to create a column alias. A column alias is an alternative name (identifier) that 

you specify to control how column headings are displayed within the result set. Use column aliases if 

column names are cryptic, hard to type, too long, or too short.  

A column alias immediately follows a column name in the SELECT clause of a SELECT statement. 

Enclose the alias in single or double quotes if it’s a reserved keyword or if it contains spaces, 

punctuation, or special characters. You can omit quotes if the alias is a single non-reserved word 

that contains only letters, digits or underscores.  

SELECT column AS column_alias FROM table 

Using a column alias: 

EXAMPLE: USING A COLUMN ALIAS  

This table (Clients): 

SELECT ClientCode AS 'Client Code' FROM dbo.Clients 

Returns this result: 

Client Code 

John 

 

TABLE NAME ALIAS 

An alias may also be used when selecting a table which is discussed in more depth within Joins.  

SELECT column FROM table AS table_alias 



 
9 

 

SELECT DISTINCT STATEMENT 

The DISTINCT keyword is used to return only distinct (different) values. With SQL, add the 

DISTINCT keyword at the beginning of the SELECT statement: 

SELECT DISTINCT column_name(s) FROM table_name 

USING THE DISTINCT KEYWORD  

To select ALL values from the column "Name" we use a SELECT statement: 

SELECT FirstName, LastName FROM dbo.ClientNames 

Result Set – Client names listed from the dbo.Clients table. 

FirstName LastName 

John Smith 

John Doe 

EXAMPLE: 

SELECT DISTINCT FirstName FROM 

dbo.ClientNames 

Result Set – John is listed once each because it is a distinct values: 

FirstName 

John 

 



 
10 

 

ORDER BY - SORTING THE ROWS 

Rows in a result set are unordered, so you should view the order in which rows appears as being 

arbitrary. This situation arises because order is irrelevant for table operations. You can use the 

ORDER BY clause to sort rows by a specified column or columns in ascending (lowest to highest) or 

descending (highest to lowest) order. The ORDER By clause always is the last clause in a SELECT 

statement. 

dbo.ClientNames Table: 

Id FirstName MiddleName LastName 

485BBBF09B194BDCB2 John A Smith 

4222CE7C621946DBB6 Jane A Smith 

3BDA009CFE83449FA4 John A Doe 

EXAMPLE 

To display the clients in alphabetical order: 

SELECT FirstName, LastName  
FROM dbo.ClientNames  
ORDER BY FirstName 

RESULT SET 

FirstName LastName 

Jane Smith 

John Smith 

John Doe 

 



 
11 

 

EXAMPLE 

To display the clients in reverse alphabetical order (descending): 

SELECT FirstName, LastName  
FROM dbo.ClientNames 
ORDER BY FirstName DESC 

RESULT SET 

FirstName LastName 

John Smith 

John Doe 

Jane Smith 

FILTERING ROWS WITH WHERE 

The result of each SELECT statement so far has included every row in the table (for specified 

columns). You can use the WHERE clause to filter unwanted rows from the result set. This filtering 

capability gives SELECT statement its real power. In a WHERE clause, you specify a search condition 

that has one or more conditions that need to be satisfied by the rows of a table. A condition is a 

logical expression that evaluates to true, false, or unknown. (The unknown result arises from 

NULLs; discussed later.)  Rows for which the condition is true are included in the result set; rows 

which the condition is false, or unknown are excluded. SQL provides operators that express different 

types of conditions. Operators are symbols or keywords that specify actions to perform on values or 

other elements.  

Use a WHERE clause in the SELECT statement to conditionally select data from a table or to filter 

the data that is selected.  

SELECT column FROM table  
WHERE column operator value 

 



 
12 

TYPES OF CONDITIONS 

Condition SQL Operators 

Comparison =, <>, <, <=, >, >=, != 

Pattern Matching LIKE 

Range Filtering BETWEEN 

List Filtering IN 

Null Testing IS NULL OR ISNULL() Function 

COMPARISON OPERATORS 

Operator Description 

= Equal to 

<> Not equal to 

> Greater than 

< Less than 

>= Greater than or equal to 

<= Less than or equal to 

 

USING THE WHERE CLAUSE 

To select only the clients where their race is declined, we add a WHERE clause to the SELECT 

statement:  



 
13 

select ClientCode, 
DeclinedEthnicity 
from Clients  
where DeclinedEthnicity = 'Y'  

Result Set: 

ClientCode DeclinedEthnicity 

000001 Y 

000002 Y 

000003 Y 

 

CONDITIONS WITH AND, OR, AND NOT  

You can specify multiple conditions in a single WHERE clause to, say, retrieve rows based on the 

values in multiple columns. You can use the AND and OR operators to combine two or more 

conditions into a compound condition. AND, OR, and a third operator, NOT, are logical operators. 

Logical operators are designed to work with truth values: true, false, and unknown. SQL uses three-

value logic, the result of a logical expression is true, false, or unknown. If the result of a compound 

condition is false or unknown, the row is excluded from the result.  

AND 

AND connects two conditions and returns true only if both conditions are true. Any number of 

conditions can be connected with ANDs. All the conditions must be true for the row to be included in 

the result. AND is independent of order: WHERE condition1 and condition2 is equivalent to WHERE 

condition2 and condition1. You can enclose one or both of the conditions in parentheses. Some 

compound conditions need parentheses to force the order in which conditions are evaluated. 

EXAMPLE 

Use AND to display each person named John and where the race is W: 

select ClientCode, 
DeclinedEthnicity 
from Clients  
where DeclinedEthnicity 
= 'Y' 
 

"dbo.Clients" table 



 
14 

Id FirstName MiddleName LastName Race 

485BBBF09B194BDCB2 John A Smith W 

4222CE7C621946DBB6 Jane A Smith W 

3BDA009CFE83449FA4 John A Doe A 

Result Set: 

Id FirstName MiddleName LastName Race 

485BBBF09B194BDCB2 John A Smith W 

4222CE7C621946DBB6 Jane A Smith W 

 

OR 

OR connects two conditions and returns true if either condition is true or if both conditions are true. 

Any number of conditions can be connected with ORs. OR will retrieve rows that match any 

condition or all the conditions. Like AND, OR’s order does not matter. You can enclose one or both 

of the conditions in parentheses.  

EXAMPLE 

Use OR to display each client named John or where the last name is Doe. 

SELECT * FROM dbo.ClientNames 
WHERE FirstName = 'John'  or LastName = 'Doe' 

"dbo.Clients" table 

Id FirstName MiddleName LastName 

485BBBF09B194BDCB2 John A Smith 



 
15 

4222CE7C621946DBB6 Jane A Doe 

3BDA009CFE83449FA4 John A Doe 

 

Result Set: 

Id FirstName MiddleName LastName 

485BBBF09B194BDCB2 John A Smith 

4222CE7C621946DBB6 Jane A Doe 

3BDA009CFE83449FA4 John A Doe 

 

NOT 

Unlike AND and OR, NOT doesn’t connect two conditions. Instead, it negates (reverses) a single 

condition. In comparisons, place NOT before the column name or expression 

SELECT * FROM dbo.ClientNames 

WHERE NOT FirstName = 'John' 

and not before the operator (even though it sounds better when read): 

SELECT * FROM dbo. ClientNames 

WHERE FirstName NOT = 'John' 

Not acts on one condition. To negate two or more conditions, repeat the NOT for each condition. In 

comparisons, using NOT often is a matter of style. The following two clauses are equivalent: 

SELECT * FROM dbo. ClientNames 

WHERE NOT FirstName = 'John' 

and 

SELECT * FROM dbo. ClientNames 

WHERE FirstName <> 'John' 



 
16 

You can enclose the NOT condition in parentheses. 

USING AND, OR, AND NOT TOGETHER 

You can combine the three logical operators in a compound condition. NOT is evaluated first, then 

AND, and finally OR. You can override this order with parentheses:  everything in parentheses is 

evaluated first. When parenthesized conditions are nested, the innermost condition is evaluated 

first. Under the default precedence rules, the condition x AND NOT y OR z is equivalent to ((x and 

(NOT y)) or z). It’s wise to use parentheses, rather than rely on the default evaluation order, to 

make the evaluation order clear.  

 

MATCHING PATTERNS WITH THE LIKE CONDITION  

The preceding examples retrieved rows based on the exact value of a column or columns. You can 

use LIKE to retrieve rows based on partial information. LIKE is useful if you don’t know an exact 

value (the client’s last name is Smi-something) or you want to retrieve rows with similar values (the 

client’s first name starts with a J). The LIKE condition works with only character strings, not 

numbers or datetimes. LIKE uses a pattern that values are matched against. A pattern is a quoted 

string that contains the literal characters to match any combination of wildcards. Wildcards are 

special characters used to match parts of a value.  

Operator Matches 

% A percent sign matches any string of zero or more characters. 

_ An underscore matches any one character 

Examples of % and _ Patterns 

Operator Matches 

A% 
Matches a string of lengths >= 1 that begins with a, including the single letter A. 

Matches ‘A’, ‘Attire’ and ‘AC/DC’.  

%s 

Matches a string of lengths >=1 that ends with s, including the single letter s. A 

string with trailing blanks (after the s) won’t match. Matches ‘s’, ‘Falls’, and 

‘DBMSes’ 

%in% 
Matches a string of length >= 2 that contains in anywhere. Matches ‘in’, ‘inch’, 

‘Pine’ and ‘linchpin’.  



 
17 

‘____’ Matches any four-character string. Matches ‘ABCD’, ‘I AM’, and ‘Jack’. 

‘Qua__’ 
Matches any five-character string that begins with Qua. Matches ‘Quack’, ‘Quaff’, 

and ‘Quake’.  

‘_re%’ 
Matches a string of length >=3 that begins with any character and has re as its 

second and third characters. Matches ‘Tree’, ‘area’, ‘fret’ and ‘are’.  

EXAMPLE 

The following SQL statement will return clients with last names that begin with a 'D': 

SELECT LastName 
FROM dbo.ClientNames 
WHERE LastName like 'S%' 

dbo.Clients table 

Id FirstName MiddleName LastName Race 

485BBBF09B194BDCB2 John A Doe W 

4222CE7C621946DBB6 Jane A Smith W 

3BDA009CFE83449FA4 John A Doe A 

Result Set: 

LastName 

Doe 

Doe 

 



 
18 

 

RANGE FILTERING WITH THE BETWEEN OPERATOR 

Use BETWEEN to determine whether a given value falls within a specified range. The BETWEEN 

operator works with character strings, numbers and datetimes. The between range contains a low 

value and a high value, separated by AND. The low value must be less than or equal to the high 

value.  

BETWEEN is a convenient, shorthand clause that you can replicate by using AND.  

WHERE testcolumn BETWEEN low_value AND high_value 

is equivalent to: 

WHERE (testcolumn >= low_value) AND (testcolumn <= high_value) 

BETWEEN specifies an inclusive range, in which the high value and low value are included in the 

search. To specify an exclusive range, which excludes end points, use > and < comparisons instead 

of BETWEEN. You can negate a BETWEEN condition with NOT BETWEEN. You can combine BETWEEN 

conditions with AND and OR.  

EXAMPLE 

The following SQL statement will return clients born in the year 1998.  

SELECT ClientCode, BirthDate 
FROM dbo.Clients 
WHERE BirthDate BETWEEN '01/01/1998' and '12/31/1998' 

RESULT SET 

ClientCode BirthDate 

000001 05/01/1998 

000004 03/01/1998 

000006 06/26/1998 

 

 



 
19 

LIST FILTERING WITH THE  IN CONDITION  

Use IN to determine whether a given value matches any value in a specified list. The IN condition 

works with character strings, numbers, and datetimes. The IN list is a parenthesized listing of one 

or more comma-separated value. The list items needn’t be in any order. IN is a convenient, 

shorthand clause that you can replicate by using OR.  

WHERE TestColumn IN (value1, value2, value3) 

is equivalent to: 

WHERE TestColumn = value1 or TestColumn = value2 or TestColumn = value3 

You can negate an IN condition with NOT IN. You can combine IN conditions and other conditions 

with AND and OR.  

EXAMPLE 

The following SQL statement will return clients where the last name is Doe or Smith.  

SELECT FirstName, LastName FROM dbo.ClientNames 

WHERE LastName IN ('Doe', 'Smith') 

DBO.CLIENTNAMES TABLE 

Id FirstName MiddleName LastName 

485BBBF09B194BDCB2 John A Doe 

4222CE7C621946DBB6 Jane A Smith 

3BDA009CFE83449FA4 John A Doe 

89DB23309D239DDIKH Daffy B Duck 

RESULT SET 

FirstName LastName 



 
20 

John Doe 

Jane Smith 

John Doe 

 

TROUBLESHOOTING WHERE 

If the WHERE clause isn’t working, you can debug it by displaying the result of each condition individually. 

To see the result of each comparison, put each comparison expression in the SELECT clause’s output 

column list, along with the values you’re comparing:  

SELECT FirstName, 

  FirstName = 'John', 

  LastName, 

  LastName = 'Doe' 

FROM dbo.ClientNames 

To verify the following: 

SELECT FirstName, LastName 

FROM dbo.ClientNames 

WHERE FirstName = 'John' 

 or LastName = 'Doe' 



 
21 

 

AGGREGATE FUNCTIONS/GROUP BY /HAVING 

Aggregate functions look at a set of values and perform a calculation to return a single value. 

Count is the only one that does not ignore null values. Aggregate functions are often used with 

GROUP BY at the end of a SELECT. 

Aggregate functions are allowed as expressions only in:  

• The select list of a SELECT statement (either a subquery or an outer query). 

• A HAVING clause.  

AVG(ALL | DISTINCT expression) - Returns the average of the values in a numeric 

expression 

COUNT(ALL | DISTINCT expression) - Number of values in the expression 

COUNT(*) - Returns the number selected rows 

MAX(expression) - Highest value in the expression 

MIN(expression) - Lowest value in the expression 

SUM(ALL | DISTINCT expression) - Returns the sum of all the values, or only the 

DISTINCT values, in the expression 

**SUM, AVG, COUNT, MAX, and MIN ignore null values; COUNT(*) does not.  

The optional keyword DISTINCT can be used with SUM, AVG, and COUNT to eliminate 

duplicate values before an aggregate function is applied (the default is ALL). 

SUM and AVG are used with numeric values like int, decimal, numeric and money data types. 

MIN and MAX can be used with any data types. Aggregate functions other than COUNT(*) 

cannot be used with text and image data types. 



 
22 

 

GROUPING ROWS WITH GROUP BY 

GROUP BY... was added to SQL because aggregate functions (like SUM) return the aggregate of all 

column values every time they are called, and without the GROUP BY function it was impossible to 

find the sum for each individual group of column values. The GROUP BY clause comes after the 

WHERE clause and before the ORDER BY clause. Grouping columns can be column names or derived 

columns. No columns from the table can appear in an aggregate query’s SELECT clause unless 

they’re also included in the GROUP BY clause. When using a case statement or some other complex 

nonaggregate expression, the GROUP BY expression must match the SELECT expression exactly. 

The only part of the expression that should not go in the GROUP BY clause is the alias if one is used 

on the column. If a grouping column contains a NULL that row becomes a group in the result. Use a 

WHERE clause in a query to eliminate rows before grouping occurs. Order by can be used and 

should contain the alias given to the aggregate column.  

Syntax for the GROUP BY function: 

SELECT testcolumn, SUM(testolumn2) FROM test_table GROUP BY testcolumn 

EXAMPLE 

Dbo.Services table 

Client Duration 

JSMI012345 1.5 

JSMI012345 .5 

JDOE012347 3 

JDOE012347 1 

SQL 

select Client, sum(ClientDuration)  as ClientDuration 
from Services 

 
Msg 8120, Level 16, State 1, Line 172 

Column 'Services.Client' is invalid in the select list because it is not contained 

in either an aggregate function or the GROUP BY clause. 



 
23 

The GROUP BY clause will solve this problem:  

select Client, sum(ClientDuration)  as ClientDuration 
from Services 
group by Client 

Returns the total time per client: 

Client ClientDuration 

JSMI012345 2.0 

JDOE012347 4.0 

 

FILTERING GROUPS WITH HAVING 

The HAVING clause sets conditions on the GROUP BY clause similar to the way that WHERE interacts 

with SELECT. The HAVING clause comes after the GROUP BY clause and before the ORDER BY 

clause. The WHERE search condition is applied before grouping occurs and HAVING search condition 

is applied after. HAVING syntax is similar to the WHERE syntax, except that HAVING can contain 

aggregate functions. A HAVING clause can reference any of the item s that appear in the 

SELECT list.  

The sequence in which the WHERE, GROUP BY, and HAVING clauses are applied is: 

1. The WHERE clause filters the rows that result from the operations specified in the FROM 

and JOIN clauses.  

2. The GROUP BY clause groups the output of the WHERE clause. 

3. The HAVING clause filters rows from the grouped result.  

The syntax for the HAVING function: 

select testolumn1, SUM(testolumn2)  
from test_table 
group by testolumn1 
having sum(testolumn2) condition value 

 



 
24 

 

Dbo.Services table 

ClientCode ClientDuration_n 

JSMI012345 1.5 

JSMI012345 .5 

JDOE012347 3 

JDOE012347 1 

Using the HAVING clause 

select client, sum(clientduration) 

from dbo.services 

group by client 

having sum(clientduration) > 30 

 

Returns the total time per client where the total duration of time is greater than 30: 

ClientCode ClientDuration 

JDOE012347 4.0 

 



 
25 

 

JOINS  

All the queries so far have retrieved rows from one table. When reporting it’s often that we’ll need 

to gather data from multiple tables simultaneously. A join is a table operation that uses related 

columns to combine rows from two input tables into one result table. You can join as many tables as 

necessary.  

Why do joins matter?  The most important database information isn’t stored in the rows of 

individual tables; rather, it’s the implied relationships between sets of related rows.  

QUALIFING COLUMNS 

Qualifying column names becomes necessary when the same column exists within multiple tables 

that will be joined in the same SQL statement. To identify an otherwise-ambiguous column uniquely 

in a query that involves multiple tables, use it’s qualified name. A qualified name is a table name 

followed by a dot and the name of the column in the table. Because tables must have different 

names within a database, a qualified name identifies a single column uniquely within the entire 

database. table.column is a qualified column.  

Because Clientcode exists in both the dbo.Clients and dbo.services table, it must be qualified when 

joining the two tables.  

Example 

select c.ClientCode 
 , s.StartDate 
 , cn.FirstName 
 , cn.LastName 
from dbo.Clients c 
join Services s on s.Client = c.id  
join dbo.ClientNames cn on cn.Client = c.id 

You can mix qualified and unqualified names within the same statement. Notice that the only 

column that needed to be qualified is clientcode. This is because it exists within both tables and 

would be ambiguous unless qualified. It’s recommended to qualify all columns when joining tables 

to ensure that changes to a table’s structure don’t introduce ambiguities.  

TABLE ALIAS 

Table aliases are often used when joining tables. A table alias is required if joining the same table 

multiple times as each table must be unique. A couple other reasons to use a table alias is that it 

saves typing and reduces statement clutter.  

Example:  



 
26 

select * 

from dbo.episodestaff as es 

inner join dbo.staffroles as ps on ps.primarystaffid = es.staffrole 

inner join dbo.staffroles as ss on ss.primarystaffid = es.staffrole 

inner join dbo.staffroles as ts on ts.primarystaffid = es.staffrole 

USING JOINS 

As discussed previously, tables in a database are related to each other with keys. A primary key is a 

column with a unique value for each row. A foreign key links to a primary key in another table. The 

purpose is to bind data together, across tables, without repeating all of the data in every table.  

In the dbo.Clients table below, the id column is the primary key, meaning that no two rows can 

have the same id. The id distinguishes two clients even if they have the same name.  

When you look at the example tables below, notice that:   

• The id column is the primary key of the dbo.Clients table  

• The clientid column is a foreign key within the dbo.services table  

• The clientid column in the dbo.services table is used to refer to clients in the dbo.Clients 

table. 

DBO.CLIENTS TABLE 

Id FirstName MiddleName LastName Race 

485BBBF09B194BDCB2 John A Smith W 

4222CE7C621946DBB6 Jane A Smith AA 

3BDA009CFE83449FA4 John A Doe A 

DBO.SERVICES TABLE 

ClientID ActivityDate_d Starttime_t Endtime_t Program 

485BBBF09B194BDCB2 01/01/2012 8.00 8.30 AOD 

4222CE7C621946DBB6 02/01/2012 10.00 11.00 MH 

3BDA009CFE83449FA4 03/01/2012 11.00 12.00 MH 

 



 
27 

 

INNER JOIN 

 

The A circle represents all records within one table and the B circle represents all records in 

another table. Notice how there is a bit of overlap between A and B in the middle. The 
overlapping section is what will pull from the two tables when you perform an INNER JOIN. An 
inner join only returns those records that have “matches” in both tables. So for every record in 
A, you will also get the record linked by the foreign key in B. I used green to signify the 
records that would be returned by the inner join. In SQL think in terms of AND. 

We can select data from two tables with the INNER JOIN keyword, like this: 

SELECT field1, field2, field3 

FROM first_table 

INNER JOIN second_table ON first_table.keyfield = second_table.foreign_keyfield 

The INNER JOIN returns all rows from both tables where there is a match. If there are rows in 

dbo.Clients that do not have matches in dbo.services, those rows will not be listed. 

 

LEFT JOIN 

A left join returns all records on the “left” table (A) whether they have matching records in the 

“right” table (B) or not.  If, however, they do have a match in the right table it will return the 

matching records in that table.  

 

SELECT field1, field2, field3 
FROM first_table LEFT JOIN second_table ON first_table.keyfield = second_table.foreign_keyfield 

 


